Workshop

Portland Harbor

August 10, 2012

Draft Site Level Recontamination Evaluation Framework

CDM Smith

Overall Framework Process

Feasibility

Develop Conceptual Model

Context Conceptual Model

Conceptual Model Objectives

- Identify Important Processes
 - How much do seasonal river flows vary? Is the velocity field expected to be different enough during high flows to change sedimentation rates?
 - How often is re-suspension/scour expected?
 - How much do the recontamination site's characteristics vary within the site?
 - Is deposition of contamination on the sediment bed the primary exposure mechanism?
- Be Quantitative Where Possible
 - Assemble and analyze historical data
 - Estimate relative magnitudes of processes (and estimate uncertainty)
 - Assess environmental variability

Conceptual Model Objectives (continued)

- Identify Data Gaps
 - How comprehensive is historical river flow data?
 - Outfall Runoff data?
 - Outfall WQ data?
 - River WQ data?
 - Can reliable stormwater sedimentation rates be estimated from existing data?
 - Can reliable stormwater pollutant loadings be estimated from existing data?

Monitoring Data

Field Data Collection

- Upriver Loading
 - Sediment Traps generally use available historical data
 - Water Quality Sampling
- Upland Loading
 - Storm Runoff Flows
 - Storm Event Flow Weighted Concentrations or Event Mean Concentration
 - Sediment
 - Constituents of Concern
- At Potential Recontamination Site
 - Sedimentation Rates
 - Sediment traps
 - Cores
 - Bathymetric surveys
 - In-situ Sediment Characteristics

Field Data Collection (continued)

- Upland Stormwater Monitoring Data
 - Capture seasonal variability
 - Address hydrologic variability
 - Statistically significant sample size
- Specialized Studies
 - Bathymetry
 - Particle size distribution
 - Scour/Deposition area

Evaluation of SEDCAM Screening Level Approach

Is SEDCAM Appropriate for Screening-Level?

CI - CHEMICAL CONCENTRATION IN FRESHLY DEPOSITED SEDIMENT (p/g)

C - CHEMICAL CONCENTRATION IN SURFACE MIXED LAYER (p/g)

M = SEDIMENT ACCUMULATION RATE (g/cm²/yr)

S - MASS OF THE MIXED LAYER (g/cm²)

k = FIRST ORDER DECAY CONSTANT (1/yr)

Steady-state physical system (all terms are constant in time):

- Accumulation (loading) rate of sediment and contaminant
- Mixed layer thickness
- Decay rate to represent diffusion and chemical decay
- Burial rate

"Box-Model" – no accounting for spatial or temporal variability

Is SEDCAM Appropriate for Screening-Level?

- ✓ Can <u>important physical processes</u> be represented in SEDCAM? For example: Re-suspension may be considered important.
- ✓ Is the <u>steady-state condition</u> either an accurate, or at least a conservative, representation of the recontamination site?
 - For example: Recontamination sites that are in open river channels may experience temporal variability that is difficult to capture using SEDCAM
- ✓ Are conditions <u>spatially uniform</u> enough to apply a box-model?
- ✓ Can conservative model inputs be <u>reliably estimated</u>?

Screening-Level SEDCAM (or other 1-d model)

Define Subareas

Break recontamination site into subareas for model application using:

- Remediation activity
- Sediment properties
- Sedimentation rates/loading

Develop Design Scenarios for SEDCAM

Scenarios are site-specific, but should <u>bracket</u>:

- Estimated uncertainty in model parameters/inputs
- Estimated hydrologic and environmental variability

Long historical datasets help quantify variability Comprehensive datasets help quantify uncertainty

Develop Design Scenarios for SEDCAM (continued)

A Design Scenario should: bracket the most realistically conservative conditions with a safety factor

- Recommend multiple scenarios
- Possible Conservative Scenario:
 - Highest possible expected contaminant loadings
 - Lowest possible expected "clean" sediment loadings

• Example:

- Apply expected near-field stormwater outfall deposition to entire sub-area
- If upstream contaminant loadings are low and local stormwater loadings are high, apply dry weather river flow loadings with wet weather stormwater loadings

Develop Design Scenarios for SEDCAM (continued)

- Model Parameters to be estimated for each scenario:
 - Mixed layer thickness/Mass of mixed layer
 - Decay rate
- Inputs to be estimated for each scenario:
 - Sediment loading
 - Contaminant loading

Additional Guidance

Setting Up SEDCAM

- 1 Equation can be solved in Excel
- Validation is recommended, if possible
 - Use historical data to check that model can qualitatively represent the site
- Run each scenario
- Perform sensitivity analysis

Sensitivity Analysis: Purpose

- Identify sensitive parameters and inputs
- Qualitatively estimate impact of using less conservative values

Sensitivity Analysis: Methodology

Evaluate impact of model input variations within reasonable range of values

- Mixed depth
 - Increasing and decreasing by a factor of 2 may be appropriate
- Decay Rate
 - Increasing and decreasing by 1 to 2 orders of magnitude may be appropriate
- Sedimentation Rate
 - Factor of 10 may be appropriate, to account for local variations
- Contaminant Loading Rate
 - Should be determined from range of measurement data increasing by 1-2 orders of magnitude may be appropriate (or by 1-2 standard deviations)
- Sediment Density
 - Factor of 2 may be appropriate

Value Ranges in Portland Harbor Studies

	Terminal 4	Gasco	Arkema	LWG
Measured Sedimentation Rates	0 – 4 cm/yr	NA	0 – 30 cm/yr	Net erosion to over 10 cm/yr
Estimated Mixed Layer Thickness	15-25 cm	Modeled mixing in top 30 cm	15 cm	Modeled mixing in top 30 cm
Sediment Density	1.53 g/cc	Used LWG	0.92 g/cc (average)	0.7 – 1.2 g/cc (average)
Contaminant Loadings	Different COI for each site			
Decay Rate	None used	NA	NA	NA

NA – data not available or not applicable

Evaluate screening-level results

What is the risk of recontamination?

- Identify concentration threshold for "recontamination"
- Is recontamination predicted by conservative scenarios?
- Does model sensitivity indicate potential recontamination?

If YES, then a more detailed analysis is recommended

If NO, then one or more simplified refinements are recommended to verify confidence in the model

Refined Screening-Level Analysis

Considerations in Refining Analysis:

- ✓ <u>Uncertainty</u>: Would <u>additional data</u> improve confidence in model parameters/inputs?
- ✓ <u>Accuracy</u>: Would further <u>dividing modeled subareas</u> increase model accuracy?
- ✓ Uncertainty bullet. Do conservative inputs sufficiently represent <u>uncertainty and risk</u>?
- ✓ <u>Variability</u>: If hydrologic variability is significant, would using <u>time-varying model inputs</u> produce a more accurate scenario?

Potential SEDCAM Refinements

Refinement	Advantage	
Use time-varied loading	Represent hydrologic variability	
Allow mixed layer thickness to change in time	Improve accuracy for sediment capping areas	
Run a Monte Carlo suite of scenarios	Improve variability representation	
Refine model inputs with additional field data	Reduce model uncertainty	
Refine subareas into smaller sections	Increase accuracy of parameters/inputs	
Use CORMIX to quantify:1) Near-field stormwater outfall deposition zones2) Sedimentation rates in near-field	Refine "worst-case" loading estimates	

More detailed analysis

Available Tools

	Box Models and 1D Models	2D-3D
Description	Models simplify sediment to a single mixed layer. SEDCAM: - represents sediment inputs with a single input term (sediment loading) and a single output term (burial). Inputs can be calculated from field data or from hydrodynamic/hydraulic sediment transport models.	Models represent sediment with several vertical layers and several horizontal cells. Represents chemical transport, including biological and chemical processes.
Processes included	 Sedimentation Contaminant loading Chemical decay Advection/Diffusion May also include: Erosion/resuspension Chemical partitioning Sorption 	 May include: Hydraulics, particle settling velocities and resuspension Chemical and sediment transport in the water column Bioturbation Diffusion Sorption
Advantages	 Simple to use Can be modified to incorporate uncertainty and variability (see Refined versions of SEDCAM) 	 Can represent horizontal and vertical variations in properties Incorporates temporal changes in model inputs May more accurately represent diffusion, chemical/biological decay and advection

Choosing The Appropriate Tools

- Important Processes: Return to Conceptual Model
- Questions to Consider: See checklist

Checklist

- Do the physics and chemistry represented in the model match the conceptual model?
- Is important accuracy sacrificed for simplicity?
 - Or conversely, where unavoidable unknowns exist, is the model overly complicated? This can also increase model error.
- Can the model adequately represent both:
 - Large-scale processes such as watershed loading
 - Smaller-scale processes such as local sedimentation rate variations

Checklist (continued)

- Is there sufficient data to accurately represent all the physics in the model? If not, can that data be obtained?
- Has the model been used before for a recontamination or longterm sediment treatment evaluation?
- Can the model represent changes in site features over time?

